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Abstract 
How do people use human-made objects (artifacts) to learn 
about the people and actions that created them? We test the 
ULFKQHVV�RI�SHRSOH¶V�UHDVRQLQJ�LQ�WKLV�GRPDLQ, focusing on the 
task of judging whether social transmission has occurred (i.e. 
whether one person copied another). We develop a formal 
model of this reasoning process as a form of rational inverse 
planning, which predicts that rather than solely focusing on 
DUWLIDFWV¶�VLPLODULW\ to judge whether copying occurred, people 
should also take into account availability constraints (the 
materials available), and functional constraints (which 
materials work). Using an artifact-building task where two 
characters build tools to solve a puzzle box, we find that this 
inverse planning model predicts trial-by-trial judgments, 
whereas simpler models that do not consider availability or 
functional constraints do not.  This suggests people use a 
process like inverse planning to make flexible inferences from 
DUWLIDFWV¶�IHDWXUHV�DERXW�Whe source of design ideas.  

Keywords: social cognition; Bayesian inference; explanation; 
social transmission; imitation; artifact; design; inverse 
planning 

Introduction 
We live surrounded by human-made objects, or artifacts. 
These artifacts are crucial to our lives not only as tools, but 
also as an omnipresent source of social information. Based 
on the objects a person owns, people make quick and accurate 
MXGJPHQWV� DERXW� D� SHUVRQ¶V� WUDLWV�� LQWHUHVWV�� DQG� VRFLDO�
affiliations (Gosling, 2008; Richins, 1994). The artifacts a 
person creates - like novel tools, art, music, or text - provide 
particularly rich information about the person and actions that 
created them (Gosling, 2008). 
    How do people reason about other individuals from the 
artifacts they create? Here we explore the nature of this 
reasoning, a form of intuitive archeology. In the same sense 
that archeologists use objects to make inferences about the 
people and cultures that created them, we propose that people 
also infer complex social-causal information from the design 
of artifacts, by integrating their mental theories of the 
physical-mechanical world with their theories of the social 
world (e.g. Battaglia, Hamrick & Tenenbaum, 2013; Gopnik, 
2012; Baker, Saxe & Tenenbaum, 2009) to infer the most 
SUREDEOH�H[SODQDWLRQ�IRU�DQ�REMHFWV¶�IHDWXUHV� 

Intuitive Archeology as Inverse Planning 
Previous work in the domain of action understanding has 
proposed that people make inferences about the goals of 
RWKHUV¶� DFWLRQV� EDVHG� RQ� D� SURFHVV� RI� µLQYHUVH� SODQQLQJ¶�

(Baker, Saxe, & Tenenbaum, 2009; Liu, Ullman, Tenenbaum 
& Spelke, 2018). The idea of inverse planning is that people 
have knowledge of the generative process behind actions 
from planning their own ± and this planning process allows 
them to know what a rational agent would do, given the same 
goals and environmental constraints. Therefore, when 
UHDVRQLQJ�DERXW�RWKHUV¶�DFWLRQV��SHRSOH�LQYHUW�WKLV�JHQHUDWLYH�
process to infer the goals of another agent from its observed 
behaviors. Here we propose that a fundamentally similar 
inverse planning processing explains how we reason about 
the artifacts people create: People use their own generative 
model of how they would construct an artifact under a given 
set of constraints to infer the goals and decisions that led 
another person to create this artifact and its features. Such a 
reasoning process would allow people to flexibly infer a 
variety of social-causal information about others from the 
physical features of artifacts they create.  
    We focus on a foundational inference in this 
domain:  Inferring whether social transmission of ideas has 
occurred (i.e. imitation, copying), or whether a particular 
aspect of a design was generated independently by an 
individual. The interaction of these two basic processes, 
termed imitation and innovation, account for cultural 
HYROXWLRQ�RI�DUWLIDFWV¶�GHVLJQV�RYHU�KXPDQ�KLVWRU\��+HQULFK��
2015; Tomasello, 1999; Legare & Neilsen, 2015). This 
inference also has real-world applications for understanding 
plagiarism detection ± and what can be reasonably expected 
of jurors in plagiarism cases as they consider two designs and 
determine the likelihood that copying has occurred. Lastly, 
this inference is foundational to understanding how people 
infer social-causal information from artifacts, since designs 
that were created independently license different inferences 
than those that were copied. For example, a highly functional, 
complex design that was independently generated may tell 
you about the intelligence or creativity of a designer 
(Gosling, 2008), whereas a design that was copied may 
instead be informative about the designer¶s social history and 
cultural group (their source of shared knowledge; e.g. 
Schachner et al., 2018; Soley & Spelke, 2016). Thus, in the 
current work, we model and test how people infer whether or 
not copying (social transmission) occurred in the design of an 
artifact. 

Inverse Planning, Or a Simpler Cognitive Process?  
A natural alternative theory exists to the rich and structured 
explanation-based reasoning process proposed by inverse 
planning models. People may infer that copying occurred 
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using a simple heuristic based on perceptual similarity: If two 
things are more perceptually similar, then copying is more 
likely to have occurred. Notably, past work on detection of 
copying in music has relied on this type of simple similarity 
metric in formal models, to predict jury decisions in music 
plagiarism cases (Savage, Cronin, Müllensiefen, & Atkinson, 
2018). 
     In contrast to these straightforward similarity-based 
models, other work has provided initial evidence that people 
detect copying via a more complex process of inverse 
planning or explanation- based reasoning (Schachner et al., 
2018). In particular, this work found that people expect others 
to have a preference for efficiency, and factor this in when 
making inferences about copying. Thus, when two characters 
create identical train track designs that are also highly 
efficient ways to achieve the intended goal, observers use 
HIILFLHQF\�WR�µH[SODLQ�DZD\¶�WKH�VLPLODULW\�± and thus judge 
copying less likely for identical efficient tracks than they 
would otherwise. 
     While this work is suggestive of a system of inverse 
planning, it is possible (and even plausible) that 
understanding of efficiency is unique and privileged in 
SHRSOH¶V� UHasoning. Reasoning about efficiency, and 
expecting others to act rationally by moving efficiently 
toward their goals, is thought to be foundational to cognition: 
It develops early in infancy (Gergely, Nádasdy, Csibra, & 
Bíró, 1995, Skerry, Carey & Spelke, 2013), is shared with 
other species (Hauser & Wood, 2010), and is a foundation for 
the entire domain of action understanding (Dennett, 1987; 
Baker et al. 2009). Thus, rather than showing a rich and 
flexible process of reasoning that takes into account a wide 
variety of alternative explanations (as proposed by inverse 
planning models), the evidence thus far is consistent with a 
much simpler system, in which similarity metrics are 
selectively overridden by privileged efficiency-based 
explanations. 

The Current Work  
In the current work, we test whether people use a rich and 
flexible process of inverse planning that takes into account 
alternative explanations that go beyond efficiency. In 
particular, we ask whether people rationally consider two 
factors: the range of materials available to build with, which 
we term the availability constraint; and whether each of the 
available materials would function or fail to function to solve 
the problem at hand, which we term the functional constraint. 
Rationally speaking, if a larger set of materials are available 
to choose from, similarity should be seen as stronger 
evidence of copying than if there is a smaller set of materials 
available to choose from (as the probability of selecting the 
same item by chance is lower; similar to the suspicious 
coincidence mechanism sometimes referred to DV� WKH� µVL]H� 
SULQFLSOH¶��7HQHQEDXP�	�*ULIILWKV���������6LPLODUO\��LI�PDQ\ 
of these materials would solve the problem, similarity is more 
indicative of copying than if only one or a few of the options 
would solve the problem at hand ± as clearly non-functional 
materials are unlikely to be used. We first formalize these  

 

    
Figure 1: Left: Tool selection task with example handles 

(which differ in color), and rods (which differ in shape and 
therefore functionality). Right: Example of two identical 

tools people might be shown on a particular trial. 
 

constraints and then experimentally test their usage when 
people make copying inferences.  

An Inverse Planning Model of Copy Detection 
To provide a clear test of the inverse planning account, and 
tease it apart from simpler alternatives, we model and test a 
simple artifact-building task which crucially involved both 
availability and functional constraints. Consider a scenario 
where one is asked to solve a puzzle: A button is out of reach 
in a box, with the front covered by glass, so only the hole in 
the top allows access. You must build a tool to reach the 
button. To do so, you are given two sets of pieces: 10 handles, 
which differ by color; and 10 rods, which differ by shape. 
You can connect one handle to one rod to form a two-part 
tool (see Figure 1). 
     You may be asked to solve one of two puzzle boxes, which 
differ in one respect: How many of the rods would work to 
solve them. In particular, for one box, all of the 10 rods would 
ILW� WKURXJK� WKH� ER[¶V� FLUFXODU� KROH� DQG� VROYH� WKH� SX]]OH�
(unconstrained; circle box). In the other case, only 1 of the 
10 rods fits (only the star-shaped rod fits into the star-shaped 
hole), and so only 1 of the 10 rods can be used to solve the 
puzzle (constrained; star box). This box thus introduces a 
functional constraint that applies selectively to rods, and not 
handles (which would all function in both cases). 
     Now, you observe two tools that other people have made: 
for example, two people built the same tool, choosing the 
same star-shaped rod and the same red handle. How likely are 
they to have copied each other? This task provides a simple 
instantiation of relevant issues people confront when making 
complex decisions about copying through inverse planning: 
Reasoning about the range of materials available to the 
builders; which pieces would work; and a multi-part decision 
process (choose a handle, choose a rod). 
     Formally, we can think of this task as having the following 
structure: You see a tool built by person 1, and a second tool 
built by person 2, in order to solve a puzzle box. You wish to 
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LQIHU�ZKHWKHU�SHUVRQ���FRSLHG�WKH�WRRO¶V�GHVLJQ�IURP�SHUVRQ�
1, or independently created it. 
     Each tool consists of two pieces linked together ± a rod, r, 
and a handle, h ± each of which was selected from the set of 
available options. Formally, you are asked to make an 
inference, where if c indicates whether person 2 copied 
person 1, you wish to infer the probability of copying 
 ܲሺܿȁݎଵǡ ݄ଵǡ ଶǡݎ ݄ଶሻ, given the observed rod and handle of 
SHUVRQ��¶V�WRRO�ሺݎଵǡ ݄ଵሻ and the observed rod and handle of 
SHUVRQ��¶V�WRRO�ሺݎଶǡ ݄ଶሻ. Taking only the case of a rod being 
copied, and assuming copying judgments depend only on the 
rod and handle being identical or different (e.g., a binary 
notion of similarity), the posterior on copying is: 

ܲሺܿ פ ଵǡݎ ଶሻݎ ൌ
ܲሺܿሻ� ܲሺݎଶ ൌൌ ଵݎ פ ܿሻ

ܲሺݎଶ ൌൌ ଵሻݎ
 

    This is the probability that copying has occurred, given 
your prior likelihood on copying and the relative likelihoods 
that such an overlapping design would be generated under 
each of the possible mechanisms (copying, c, vs. independent 
creation, ܿ), where: 

ܲሺݎଶ ൌൌ ଵሻݎ ൌ ܲሺܿሻ� ܲሺ ଶݎ ൌൌ ଵݎ פפ ܿ ሻ
 ൫ͳ െ ܲሺܿሻ൯� ሺ ଶݎ ൌൌ ଵݎ פפ ܿ ሻ 

     In the current task this depends not only on the rod but on 
both the rod and handle, such that, when the rod is identical 
but the handle is not identical, this posterior on copying 
depends on ܲሺݎଶ ൌൌ ଵݎ פ ܿǡ ଵሻ, ܲሺݎ ଶݎ ൌൌ ଵݎ פפ ܿ ሻ, 
ܲሺ݄ଶ ് ݄ଵ פפ ܿ ሻ, and ܲሺ݄ଶ ് ݄ଵ פפ ܿ ሻ. This has the 
structure of a Bayes net, including the key concept of 
explaining away: A given aspect of the design can be 
generated either via copying or independently, and evidence 
for one provides evidence against the other. Thus, if two 
people create identical tool designs, but this design is also 
likely to be created independently (due to either availability 
constraints or functional constraints), this provides weak 
evidence of copying despite the identical tools. 
    To make this model concrete, we need to specify 5 things:  
      (1) ܲሺܿሻǡ ܲሺܿሻ�  - the a priori estimate of how likely 
person 2 was to have copied either the rod or handle 
(unconditional on the data; i.e. before we see either of the 
built objects). This depends for example on how close or 
distant the two people are from one another (Schachner et al., 
2018). We assume the chance of copying is identical and 
independent for both rods and handles, e.g. ܲሺܿሻ ൌൌ ܲሺܿሻ, 
and refer to this as ܲሺܿሻ, the prior on copying. 
      (2) ܲሺ ଶݎ ൌൌ ଵݎ פפ ܿ ሻ - the likelihood of the particular rod 
being used by person 2 matching that of person 1, given that 
SHUVRQ� �� ZDV� LQ� IDFW� FRS\LQJ� IURP� SHUVRQ� �¶V� REMHFW��:H�
formalize this as perfect copying plus a small error rate term, 
e, to account for the rate at which an individual might intend 
to copy but ultimately select a different rod:  ܲሺݎଶ ൌൌ ଵݎ פ
ܿሻ ൌ ͳ െ ݁. Therefore ܲሺ ଵݎଶஷݎ פפ ܿ ሻ ൌ ݁. 
     (3) ܲሺ ଶݎ ൌൌ ଵݎ פפ ܿ ሻ - the likelihood of rod ݎଶ being the 
same as ݎଵ, given that person 2 was NOT copying from 
SHUVRQ� �¶V� REMHFW�� DQG� LQGHSHQGHQWO\� JHQHUDWHG� WKH� REMHFW�
with no reliance on ݎଵ. When all pieces would function, this 
is simply 1/R, where R is the total number of rod choices 
available. However, functional constraints also affect this 

factor: When only a subset of pieces will function, this 
effectively reduces the number of reasonable options. 
Accordingly, in the context of a functional constraint, the 
model treats only the functional pieces as options, reducing 
the value of R to the number of functional options (if only 
one rod functions, R=1). 
     4) ܲሺ݄ଶ ൌൌ ݄ଵ פפ ܿ ሻ - the likelihood of the particular 
handle being generated by person 2, given that person 2 was 
LQ� IDFW� FRS\LQJ� IURP�SHUVRQ��¶V� REMHFW��DQG�JLYHQ�݄ଵ. This 
again is based on the same error rate e. 
      (5) ܲሺ ݄ଶ ൌൌ ݄ଵ פפ ܿ ሻ - the likelihood of handle ݄ଶ 
being the same as ݄ଵ, given that person 2 was NOT copying 
IURP� SHUVRQ� �¶V� REMHFW�� DQG� LQGHSHQGHQWO\� JHQHUDWHG� WKH�
object with no reliance on ݄ଵ. In contrast to the rods above, 
the handles differ only in color rather than shape; thus, all 
handles function equally well in both the unconstrained 
(circle box) condition, and the functionally constrained (star 
box) condition. This is therefore simply 1/H, where H is the 
number of handle options. 

Comparing to Simpler Alternatives  
This model of inference as inverse planning posits that people 
consider both the number of available options and the 
functional constraint of the puzzle box when judging whether 
copying occurred. To test whether each of these components 
DUH�QHHGHG�WR�SUHGLFW�SDUWLFLSDQWV¶�MXGJPHQWV��ZH�FRPSared 
this model to three simpler models. 
     These models followed a 2x2 structure, either taking into 
account or not taking into account the availability constraints 
(+/- availability) or the functional constraints (+/- 
functional).  For example, the model that considers 
availability constraints but ignores functional constraints 
does not take into consideration the functional constraint of 
the star box, e.g., assumes people choose among all rods even 
in the star box condition. The model which ignored 
availability constraints did not take into account the number 
of pieces available in a flexible way. Instead, this model 
posited that people had a fixed a-priori idea of the number of 
pieces available to choose from, and that this number did not 
change based on the situation presented. Thus, rather than 
choose a rod with 1/R, where R is the number of options, a 
parameter N quantified this fixed number of imagined 
choices (e.g., regardless of how many were present). This 
model did take into account the functional constraint of the 
star box (assuming people only choose the star rod in this 
case). A final simplified model ignored both functional and 
availability constraints, and thus effectively instantiated a 
simple perceptual similarity heuristic. This model only took 
into account the extent to which the pieces were similar, 
without taking into consideration either functional constraints 
or availability constraints. 

7HVWLQJ�WKH�0RGHOV¶�3UHGLFWLRQV� 
These models make quantitative predictions about the 
likelihood of copying for any given pair of tool designs, in a 
wide range of contexts. We next aimed to test how well the 
various models predict human behavior. The inverse 
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planning model predicts that for two identical tools, people 
will infer that copying is more likely to have occurred when 
(a) there were more pieces available as options to build with, 
thus creating more of a suspicious coincidence that the same 
piece was chosen twice; (b) there were no functional 
constraints on which pieces would work or not work, thus 
allowing all of the available pieces to serve as equally good 
options. By contrast, the simplest perceptual similarity model 
predicts that any identical objects will lead people to infer 
copying. Thus, we focused our data collection on these and 
other particularly informative trials.  

Method 
Full study design/analysis plan including model code was 
preregistered on the Open Science Framework (OSF), and is 
available at https://osf.io/y8u7t.  

Participants 
Using a pre-registered design, N=108 adults from the U.S. 
(57 male, 50 female, 1 other gender identity; M age=37.9, 
SD=10.9, range=20-���� ZHUH� UHFUXLWHG� WKURXJK� $PD]RQ¶V�
Mechanical Turk. Sample size was preregistered and 
determined from power analysis of a pilot dataset with a 
slightly different design (N=20; tested a subset of the current 
test trials; with each subject completing all trials). The R 
³SZU´� SDFNDJH�was used to conduct a paired t-test power 
calculation on participant-level BICs with the goal of 90% 
power (Champely et al., 2018). Based on pre-registered 
exclusion criteria, additional participants were excluded due 
to: 1. Appearing to be non-native English speakers or a bot 
�Q ����GHWHUPLQHG�E\��� LQGHSHQGHQW� FRGHUV¶� UDWLQJ�RI� IUHH-
response text answers) 2.  Incorrectly answering any memory 
check question (n=49) 3. Incorrectly answering 50% or more 
of the attention check questions (n=12). The number of 
participants failing the preregistered memory check questions 
was higher than expected, thus we reanalyzed the data with 
these participants included, and found that our model results 
and conclusions remain unchanged in this case (see Results). 

Design 
Participants were shown tools that two target individuals 
designed, and were asked to judge whether or not one of those 
individuals copied the RWKHU¶V� WRRO�� $FURVV� WULDOV�
we manipulated (1) the number of rod options available (2 
versus 10); (2) the number of handle options available (2 
versus 10); (3) The presence or absence of a functional 
constraint, i.e. whether they were trying to solve the circle or 
star puzzle box; (4) The extent of similarity of the two tools 
that were built (both rod and handle identical, one part 
identical and one part different, or both rod and handle 
different). As all designers were assumed to have 
successfully solved the puzzle, we did not include trials in the 
star box condition which had different rods, as this would 
involve building a tool that would not function. Thus in total 
there were 24 unique test trials. Because of the possibility of 
demand characteristics if all participants saw the full design, 
each participant completed only a randomly-selected subset 

of 4 trials, resulting in 18 unique participants completing each 
trial.  

Procedure 
Participants first received instructions regarding the puzzle-
box task, and that they would see pairs of tools that people 
had built to reach the button. Instructions described an 
ambiguous situation, where copying may or may not have 
RFFXUUHG��³:KLOH�GHVLJQLQJ�WKH�WRROV�WKH�SHRSOH�ZHUH�LQ�WKH�
VDPH� URRP�� IDFLQJ� DZD\� IURP� HDFK� RWKHU´��� 7KH\� were 
instructed that different pairs of people had different numbers 
of handles and rods to choose from (10 or 2), received either 
the circle box or star box to solve, and that only one of the 
rod pieces could fit into the star-shaped opening.   
     On each trial, participants saw (1) the two tools that the 
two people had built; (2) which puzzle box the people were 
trying to solve; (3) the materials they had available to build 
with. Participants were asked to judge as a 2-alternative 
forced choice: Do you think someone copied, or they made 
them independently?  
     After each trial, an attention check question asked either 
what puzzle box was present, the number of rod options, or 
number of handle options. At the end of the task, memory 
check questions asked participants to select which rods would 
work, and which handles would work, to successfully solve 
each of the two puzzle boxes. Lastly, participants were asked 
to describe what they did in the experiment and guess the 
point of the study in free-response format, and complete 
demographics questions. 

Analysis Plan 
For each model, the best fitting parameters and likelihood of 
our data given those parameters were assessed via maximum 
likelihood estimation (MLE). We decided a priori that the 
prior on copying (range:  0-1) and number of imagined 
choices (for models that do not use the real number that 
participants were presented with; range 0-infinity) should be 
fully free to vary, while the copying error rate e was bounded 
from 0 to a maximum of 0.1. For all models, using this a priori 
specification, the MLE-derived value for the copying error 
rate was at max (0.1). To make sure this boundedness was not 
responsible for our findings, we also reran analyses letting the 
error rate parameter vary (0-1), and found the same results for 
comparative model fits in this case. To compare models, we 
use BIC (Schwarz, 1978), which penalizes models for 
complexity according to their number of parameters. We used 
bootstrapping to calculate standard errors (SEs) for each BIC. 

Results 
We first checked that participants took into account the 
perceptual similarity of designs in their assessments of 
copying, as predicted by all four models. As expected, 
participants inferred copying most often when the two tool 
designs were identical (M=51.4%, SEM=9.8%), and least 
often when the two tools were most different (M=5.6%, 
SEM=2.3%; p<.01).  
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Table 1: Maximum likelihood parameters for each model 
 

Model Copying 
Prior, p(c) 

Error 
Rate 

Imagined 
# Options 

+Availability +Functional 0.09 0.10  
+Availability -Functional 0.06 0.10  
-Availability +Functional 0.09 0.10 5.31 
-Availability -Functional 0.11 0.10 2.76 

 
We next compared the fit of the four alternative models. 

The full model out-performed all competing models, with a 
difference in BIC of 35 (ט SEM: 11-25) in comparison to the 
next-best-fit model and >400 to the other models (Table 2). 
Approximately the same results held when including 
individuals who failed the memory check: difference in BIC 
of 38 to next-best-fit model and >700 to the other models. In 
addition, the full model provided a good overall fit to 
SDUWLFLSDQWV¶�UHVSRQVHV�DFURVV�WULDOV��52= 0.75, Fig. 2A). 
   Note that while the model is relatively straightforward to 
specify, the predictions it makes are quite nuanced: because 
the model weighs and combines several factors, it predicts a 
continuous gradient of how likely copying should be, rather 
than simply saying people should never assume copying took 
place if there is any alternative explanation. The model thus 
goes well beyond verbal theories.  

Use of Availability Constraints 
3DUWLFLSDQWV¶� MXGJHPHQWV� VKRZHG� VHQVLWLYLW\� WR� DYDLODELOLW\�
constraints (i.e. the number of pieces available to build with), 
and the use of availability constraints as an alternative 
explanation for similarity. For example, on trials where two 
people made identical tools and no functional constraint was 
present, participants judged copying more likely as the 
number of available options increased (circle box condition: 
2 rods; 2 handles: 33% judged copied; 2 rods, 10 handles: 
72%; 10 rods, 2 handles: 72%; 10 rods, 10 handles: 83%). 

Use of Functional Constraints 
Participants also showed sensitivity to functional constraints, 
and used functional constraints as an alternative explanation 
for similarity. In particular, on trials where two people used 
identical rods, participants judged copying less likely on 
trials where they were solving the star box (which added a 
functional constraint; Mean copied=21.5%), vs. when they 
were solving the circle box (Mean copied=52.8%, p=0.02, 2 
tailed t-test). In contrast, on trials where two people used 
identical handles, SDUWLFLSDQWV¶�MXGJHPHQWV�GLG�QRW�GLIIHU�IRU�
the star vs. circle box (Star box: Mean copied=36.8%, Circle 
Box: Mean copied=37.5%; p=0.97, 2 tailed t-test), as 
predicted since all handle pieces would function equally well 
for both puzzle boxes. Although the model without functional 
constraints did not perform that poorly as measured by BIC, 
it did systematically miss this aspect of the data (see also 
deviations of this model in Figure 2). 

 
)LJXUH����)LW�RI�PRGHOV¶�SUHGLFWLRQV�WR�SDUWLFLSDQWV¶�UDWLQJV�

of whether copying occurred; each point represents one trial. 
The full inverse planning model appears top left; other plots 
show three simpler alternative models that do not consider 

either the availability constraints (-availability) or the 
functional constraints (-functional). 

 
Table 2: Difference in BIC from best fitting model 

(higher BIC indicates worse fit) 
 

Model %,&�ǻ�WR�
full model 

 SEM ט

+Availability -Functional 35 11 - 25 
-Availability +Functional 467 422 - 490 
-Availability -Functional 491 468 - 512 

 
3DUWLFLSDQWV¶� MXGJPHQWV� GHYLDWHG� slightly from the full 

PRGHO¶V�SUHGLFWLRQV� LQ�RQH�UHJDUG��3articipants appeared to 
under-weight the similarity of the handles, relative to the 
rods. For instance, the largest deviations between 
participantV¶� MXGJHPHQWV� and the full model¶V� SUHGLFWLRQV 
came on trials when the tools had different rods, but the same 
handle. To demonstrate this differential weighing of the rod 
vs. handle, consider trials where there are an equal number of 
rod and handle options, no functional constraint, and the built 
tools had only one similar piece. On these trials, people were 
considerably more likely to say the design was copied if the 
rod was similar than if the handle was (2 options: 0% vs.17%; 
10 options: 17% vs. 56%).  Thus, participants seemed to 
overweight evidence from the functionally-relevant 
component of the tool, even when functional constraints were 
not present.  

Overall, however, the good fit of the inverse planning 
model ± and the continuous range of predictions it makes ± 
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supports the idea that participants use an inverse planning 
strategy in judging copying from artifacts. 

Discussion 
We find strong evidence that when reasoning about artifacts, 
people use a rich, flexible system of explanation-based 
reasoning to infer whether a design idea was copied or 
generated independently. We formalized such reasoning in a 
Bayesian model as a form of inverse planning. We compared 
this model to three simpler alternatives in a task where 
participants had to judge whether a pair of artifacts was 
copied or designed independently, to test whether each 
component of the full model was needed to predict 
judgments. 
     We found that the full inverse planning model best 
SUHGLFWHG� SDUWLFLSDQWV¶� MXGJPHQWV� RI� ZKHWKHU� FRS\LQJ� KDG�
occurred. In line with the model, we found that people 
considered two broad classes of alternative explanations for 
DUWLIDFWV¶�VLPLODULW\��WKH�UDQJH�RI�PDWHULDOV�DYDLODEOH�WR�EXLOG�
with (availability constraints), and which of these materials 
would work to solve the problem (functional constraints). 
Both of these coQVWUDLQWV�µH[SODLQHG�DZD\¶�VLPLODULW\��PDNLQJ�
similarity weaker evidence of copying. This pattern of 
responses is the signature pattern of a Bayesian reasoner, in 
which a design can have different alternative explanations, 
and evidence for one provides evidence against the other 
(e.g., Gopnik et al. 2004).  
     The success of this model suggests people use a process 
of inverse planning to infer the source of design ideas from 
DUWLIDFWV¶� IHDWXUHV�� ,Q� RWKHU� ZRUGV�� SHRSOH� FRQVLGHU� WKH�
generative processes involved in building the artifacts, 
including what the goal would be, what constraints they 
would be subject to, and what (as a result) they would be 
likely to build. By inverting this generative process, people 
UDWLRQDOO\� LQIHU� WKH� VRXUFH� RI� RWKHU� SHRSOH¶V� Gesign ideas, 
taking into account goals and multiple kinds of constraints. 
    These findings show that inferences about the source of 
design ideas do not boil down to various simpler heuristics, 
or more limited systems of reasoning. First, copying 
judgments are not just based on the extent of perceptual 
similarity of the two objects, but take into account rational 
explanations for this similarity. This has implications for 
understanding how laypeople detect plagiarism in court 
cases, which has been previously formalized as a process of 
simple similarity detection (Savage et al., 2018). 
    Second, we show that this system of reasoning goes 
beyond efficiency: People can take into account multiple 
types of constraints as explanations for similarity, and are not 
limited only to reasoning about design efficiency as the only, 
privileged type of alternative explanation. This simpler 
efficiency-only account was consistent with previous 
findings, and plausible given the foundational role of 
efficiency in reasoning about intentional action (Schachner et 
al., 2018). The current data falsify this simpler account, 
showing that people flexibly take into account the materials 
available and the functional constraints of the puzzle boxes, 

which do not map to an efficiency metric (e.g. the length of a 
train track from A to B, used in Schachner et al., 2018).  
     More broadly, we provide evidence for a novel theoretical 
and formal framework for artifact cognition, as a form of 
inverse planning. Previous work has shown that people use 
inverse planning to understand the causal processes 
XQGHUO\LQJ� RWKHUV¶� DFWLRQV� �%DNHU� HW� DO��� ������ /LX� HW� DO��
2018). The current work extends this framework by 
conceptualizing artifacts as the products of intentional action. 
We suggest that people use fundamentally the same inverse 
planning process to understand artifacts as they do to 
understand actions themselves. Specifically, they rationally 
WDNH� LQWR� DFFRXQW� SHRSOH¶V� JRDOV� DQG� FRQVWUDLQWV� QRW� RQO\�
when observing actions, but also when observing artifacts 
generated by these actions ± even when the actions 
themselves are not observed. This work thus links together 
artifact cognition and theories of action understanding in a 
new way, points to a deep connection between reasoning 
about actions and artifacts, and provides a foundation for 
IRUPDOL]LQJ�WKH�SURFHVVHV�XQGHUO\LQJ�D�GRPDLQ�RI� µLQWXLWLYH�
DUFKHRORJ\¶� ± social-causal reasoning about artifacts, as 
products of intentional action. 

Acknowledgements 
We thank Michelle Lee for her help with qualitative coding 
and stimulus design, as well as Carissa Jantz and Kimberly 
McGee for stimulus preparation. This material is based upon 
work supported by the National Science Foundation Grant 
No. BCS-1749551 to AS and TFB. 

References  
Baker, C.L., Saxe, R., & Tenenbaum, J.B. (2009). Action 

understanding as inverse planning. Cognition, 
113, 329-349. 

Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). 
Simulation as an engine of physical scene understanding. 
Proceedings of the National Academy of Sciences, 110 (45) 
18327-18332. 

Dennett, D.C. (1987). The Intentional Stance. MIT Press, 
Cambridge, MA. 

Gergely, G., Nádasdy, Z., Csibra, G., & Bíró, S. (1995). 
Taking the intentional stance at 12 months of age. 
Cognition, 56(2), 165-193.  

Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., 
Kushnir, T., & Danks, D. (2004). A theory of causal 
learning in children: causal maps and Bayes nets. 
Psychological Review, 111(1), 3-32. 

Gopnik, A. (2012). Scientific Thinking in Young Children: 
Theoretical Advances, Empirical Research, and Policy 
Implications. Science, 337(6102), 1623±1627.  

Gosling, S. (2008). Snoop: What your stuff says about you. 
Profile Books. 

Hauser, M., & Wood, J. (2010). Evolving the 
capacity to understand actions, intentions, and goals. 
Annual Review of Psychology, 61, 303-324. 

���



Henrich, J. (2015). The secret of our success: How culture is 
driving human evolution, domesticating our species, and 
making us smarter. Princeton University Press. 

Legare, C. H., & Nielsen, M. (2015). Imitation and 
innovation: The dual engines of cultural learning. Trends 
in Cognitive Sciences, 19(11), 688-699. 

Liu, S., Ullman, T. D., Tenenbaum, J. B., & Spelke, E. S. 
(2017). Ten-month-old infants infer the value of goals from 
the costs of actions. Science, 358(6366), 1038-1041. 

Richins, M. L. (1994). Valuing things: The public and private 
meanings of possessions. Journal of Consumer Research, 
21(3), 504±521. 

Savage, P. E., Cronin, C., Müllensiefen, D., & Atkinson, Q. 
D. (2018). Quantitative evaluation of music copyright 
infringement. In Proceedings of the 8th International 
Workshop on Folk Music Analysis (FMA2018), 61±66. 

Schachner, A., Brady, T.F., Oro, K., & Lee, M. (2018). 
Intuitive archeology: Detecting social transmission in the 
design of artifacts. In C. Kalisch, M. Rau, T. Rogers, & J. 
Zhu, Proceedings of the 40th Annual Conference of the 
Cognitive Science Society. 

Schwarz, G. (1978). Estimating the Dimension of a Model. 
The Annals of Statistics, 6(2), 461±464.  

Skerry, A. E., Carey, S. E., & Spelke, E. S. (2013). 
First-person action experience reveals sensitivity to action 
efficiency in prereaching infants. Proceedings of the 
National Academy of Sciences, 110(46):18728-33. 

Soley, G., & Spelke, E. S. (2016). Shared cultural knowledge: 
(IIHFWV� RI�PXVLF� RQ� \RXQJ� FKLOGUHQ¶V� VRFLDO� SUHIHUHQFHV��
Cognition, 148, 106±116.  

Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization, 
similarity, and Bayesian inference. Behavioral and Brain 
Sciences, 24(4), 629-640. 

Tomasello, M. 1999. The Cultural Origins of Human 
Cognition. Cambridge, MA: Harvard University Press. 

 
 
 

���


	Introduction
	Tutorial aims
	Participants
	Learning outcomes
	Tutorial structure
	Learning materials
	Tutor credentials
	Summary of significance
	Acknowledgments
	References
	Jamie C. Gorman – Theory of Interactive Team Cognition
	David Mendonça – Adaptation in Adversarial Games
	Jerad Moxley – Chess: The Once & Future Paradigm
	Wayne D. Gray – Plateaus, Dips, & Leaps to Expertise
	Ray Perez – Basic Research for Complex Problems
	On the nature of creative processes: performativity as a missing algorithm
	Antonino Pennisi (apennisi@unime.it)
	Gessica Fruciano (frucianogessica@gmail.com)
	Giovanni Pennisi (gpennisi@unime.it)
	The creative role of performativity
	Insights from neurolinguistics
	Schizophrenia as the realm of anti-performativity

	Conclusion
	References

	Introduction
	Introduction to GitHub
	A Computational Framework for Teamwork
	Stochastic Marked Non-Homogeneous Poisson Point Processes
	Multivariate Hawkes Process with Agent Types, Repositories, and Communities

	Analyzing Teamwork on GitHub
	Are Hawkes Processes Really Necessary?
	Testing collaborative cognition

	Discussion, Limitations, and Conclusions
	Acknowledgments
	A friend or a toy? Four-year-olds strategically demonstrate their competence
	to a puppet but only when others treat it as an agent
	Abstract
	Introduction
	Experiment 1: Puppet as Agent
	Methods

	Experiment  2: Puppet as Object
	Methods
	Results and Discussion

	General Discussion
	Acknowledgments
	References
	Conversation Transition Times:
	Working Memory & Conversational Alignment
	Julie E Boland
	University of Michigan
	Abstract
	Introduction
	Experiment 1
	Procedure The experiment consisted of five experimental blocks: Conversation-Only, 1-back alone, 2-back alone, Conversation with 1-back, and Conversation with 2-back. Stimuli in the n-back consisted of upper and lower case tokens of 8 letters: A, F, J...
	Participants were greeted by one of four native English speakers (two male, two female), who conducted the experiment and served as the other interlocutor in conversation blocks. Each experimenter ran two participants on each of the five block orders....

	Experiment 2
	General Discussion
	Acknowledgments
	References
	Introduction
	Quantifiers and monotonicity
	Methods
	Iterated learning
	Model of models, quantifiers, and language
	Neural Networks
	Model of the agents
	Measures of monotonicity
	Materials

	Results
	Discussion
	References
	The everyday statistics of objects and their names: How word learning gets its start
	Abstract
	Introduction
	Method
	The Corpus
	Coding
	Visual Objects Still images were down-sampled from the video recordings at a rate of 0.2hz (1 image every 5 seconds). The 11,549 down-sampled images were then coded by naïve adult coders for the 5 most obvious objects in the scene using basic level no...
	We chose to keep the coders’ responses as intact as possible to avoid biasing the data; however, we did clean the data in the following ways. First, extraneous adjectives were removed (e.g., “baby spoon” was reduced to “spoon”); however, if an adjecti...
	Object Names All speech in the target infants’ environment was transcribed for each mealtime using Datatyvu (Datavyu Team, 2014). The audio data was broken down into 5 second intervals for ease of coding and to have an appropriate comparison to the vi...


	Results
	Visual Objects
	Talk overall was extremely sparse in these mealtime scenes. Any speech, not just speech including object names, only occurred in 55.83% of the total video time (see table 1). Object names in speech occurred even more rarely; 117 mealtime events contai...
	Nonetheless, 351 unique object names were said during mealtime activities across 1,941 naming events. It should be noted that only a small number of object names were said – about a third of those possible based on the list of visual objects. Figure 3...


	Discussion
	Acknowledgements
	References
	Introduction
	The importance of perceived value
	Motivation and value
	Curiosity and value
	Overview of experiments

	Experiment 1: Does value influence curiosity?
	Participants
	Stimuli
	Procedure
	Results
	Discussion

	Experiment 2: What influences value most?
	Participants
	Stimuli
	Procedure
	Results
	Discussion

	General Discussion
	Detecting social transmission in the design of artifacts via inverse planning
	Ethan Hurwitz (ehurwitz@ucsd.edu),  Timothy F. Brady (timbrady@ucsd.edu),  Adena Schachner (schachner@ucsd.edu)
	University of California, San Diego, Department of Psychology
	9500 Gilman Drive M/C 0109, San Diego, CA 92093-0109 USA
	Abstract
	Introduction
	Intuitive Archeology as Inverse Planning
	Inverse Planning, Or a Simpler Cognitive Process?
	The Current Work
	An Inverse Planning Model of Copy Detection
	Comparing to Simpler Alternatives
	Testing the Models’ Predictions

	Method
	Participants
	Design
	Procedure
	Analysis Plan

	Results
	Use of Availability Constraints
	Use of Functional Constraints

	Discussion
	Acknowledgements
	References
	Introduction
	General Methods
	Experiment 1
	Predictions
	Results

	Experiment 2
	Method
	Participants
	Procedure
	Predictions
	Results

	Experiment 3
	Participants
	Procedure
	Predictions
	Results

	Discussion
	References
	Hadar Karmazyn Raz (hkarmazy@iu.edu)
	Department of Psychological and Brain Sciences
	Indiana University, Bloomington, IN 47405 USA
	Abstract
	Introduction
	Behavioral Methods
	Participants
	The final sample included 16 infant-parent dyads with 12 month-old infants (8 female) ranging from 12.2 to 12.5 months (M=12.3, SD=1.12) were included in the final sample.
	Stimuli and Experimental Setup
	Egocentric View
	Data Processing

	Behavioral Results
	Modeling Methods
	A machine learning model was used to test whether the distributional properties of infants’ visual object experience impacted learning. In particular we wanted to understand the learning mechanism by which infants learn new object names in clutter env...
	The data
	Model Parameters
	Training
	The Fast-RCNNs were trained with two different datasets that varied in the frequency distributions of object images: the Zipf-like and uniform distributions. The network was trained for 1000 epochs (iterations).

	Modeling Results
	Discussion
	Acknowledgements
	References
	Methods
	Participants
	Materials
	Procedure

	Results
	Discussion and Conclusions
	References
	Without Conceptual Information Children Miss the Boat: Examining the Role of Explanations and Anomalous Evidence in Scientific Belief Revision
	Nicole E. Larsen† (nicole.larsen@mail.utoronto.ca), Vaunam P. Venkadasalam† (vaunam.venkadasalam@mail.utoronto.ca) & Patricia A. Ganea (patricia.ganea@utoronto.ca)
	Department of Applied Psychology & Human Development,
	University of Toronto, 252 Bloor St West, Toronto, Ontario, M5S 1V6
	Abstract
	Supporting Scientific Belief Revision
	Current Study
	Methods
	Participants
	Procedure
	Coding

	Results
	Discussion
	Acknowledgments
	References
	Introduction
	Method
	Participants
	Stimuli
	Design and Procedure
	Results

	Discussion
	Acknowledgements
	References
	Introduction
	Methods
	Dataset
	Measuring Tracing Accuracy
	Measuring Object Drawing Recognizability

	Results
	General Discussion
	Acknowledgements
	References
	Introduction
	Three key principles of probabilistic mental simulation theory (PMST)
	Object Persistence
	Temporal Consistency
	Probabilistic Coherence
	Study 1: Object Persistence 
	Method
	Participants
	Stimuli
	Procedure
	Results
	Discussion
	Study 2: Temporal Consistency
	Method
	Participants
	Stimuli
	Procedure
	Results
	Discussion
	Study 3: Probabilistic Coherence
	Methods
	Participants
	Stimuli
	Procedure
	Results
	Discussion

	General Discussion
	References



















	Role of Working Memory on Strategy Use in the Probability Learning Task
	Mahi Luthra (mkluthra@iu.edu), Peter M. Todd (pmtodd@indiana.edu)
	Psychological and Brain Sciences Department and Cognitive Science Program, Indiana University
	1101 E. 10th Street, Bloomington, IN 47408 USA
	Abstract
	Introduction
	References
	Introduction
	The person space
	Experimental goals and predictions

	Methods
	Participants
	Design
	Materials
	Procedure

	Results
	Discussion
	Conclusion
	Acknowledgments
	References
	Introduction
	Study 1
	Method
	Results

	Study 2
	Method
	Results

	General Discussion
	References
	Action prediction during real-time social interactions in infancy
	Abstract
	Introduction
	Method
	Participants
	Procedure
	Data processing

	Results
	Action prediction
	Infant visual attention and manual activity during parent reaching

	Discussion
	Acknowledgments
	References
	Introduction
	Theories of Cooperation
	Goals and Scope

	Collective Search Simulations
	Methods
	Evolutionary Simulations

	Results
	Interim conclusion

	Dynamic Simulations
	Dynamic Results

	General Discussion
	Conclusion
	References
	Introduction
	Exploring efficient language design and use in rational pragmatic agents
	Zipfian objective for linguistic system efficiency
	Simulating the communicative function of ambiguity
	Simulation 1: Optimal languages contain ambiguity when context is informative
	Simulation set-up
	Results and Discussion

	Simulation 2: Rational, pragmatic speakers use ambiguity efficiently
	Simulation set-up
	Speaker agents
	Hypotheses
	Results and Discussion

	General Discussion
	References
	Event Participants and Verbal Semantics:
	Non-Discrete Structure in English, Spanish and Mandarin
	Lilia Rissman (l.rissman@let.ru.nl)
	Center for Language Studies, Erasmusplein 1
	Nijmegen, the Netherlands 6525 HT
	Kyle Rawlins (kgr@jhu.edu), Barbara Landau (landau@jhu.edu)
	Department of Cognitive Science, Krieger Hall 237, 3400 N. Charles St.
	Abstract
	Introduction
	Previous Evidence for Semantic Gradience

	Experiment 1
	Participants
	Design and Materials
	Procedure
	Results and Discussion

	Experiment 2
	Introduction
	Experiment 1
	Method
	Results
	Discussion

	Experiment 2
	Method
	Results
	Discussion

	General Discussion
	References
	Individual differences in bodily attention: Variability in anticipatory mu rhythm power is associated with executive function abilities and processing speed
	Staci Meredith Weiss (sweiss@temple.edu)   Rebecca L. Laconi (devlab@temple.edu)
	Department of Psychology, 1701 N. 13th Street   Department of Psychology, 1701 N. 13th Street
	Philadelphia, PA 19122 USA     Philadelphia, PA 19122 USA
	Peter J. Marshall (pjmarsh@temple.edu)
	Abstract
	Introduction
	The Active Role of Alpha Oscillations in Perception
	Anticipatory Mu Power and Tactile Processing

	The Present Study

	Methods
	Fifty undergraduate students received course credit in return for participation. Data from six participants were excluded from analyses due to technical issues. Four additional participants were excluded due to excessive artifact that contaminated mor...
	Procedure
	Participants were instructed to prepare for tactile stimulation to the index finger of the hand indicated by the direction of the arrow, and to indicate how many stimuli they detected (one or two) by pressing a foot pedal once or twice. The foot used ...
	EEG Recording and Processing EEG was recorded at a 512 Hz sampling rate using a stretch cap (ANT Neuro, Berlin) with electrodes placed at Fp1, Fpz, Fp2, F3, Fz, F4, F7, FC6, FC1, FC2, FC5, F8, Fz, C3, Cz, C4, CP1, CP2, CP5, CP6, T7, T8, P3, Pz, POz, P...
	Behavioral Measures Following the tactile task and removal of the EEG cap, four tasks from the NIH Cognition Toolbox were administered (for details, see Zelazo et al., 2013): the Flanker task, the Card Sort task, a Processing Speed task, and a picture...


	Results
	Behavioral Responses to Tactile Stimuli
	Identifying Mu ERSP
	Quantifying Anticipatory and Post-Stimulus Mu ERSP
	Correlation of Mu ERSP with Behavior
	Regressions of Anticipatory Mu ERSP with Behavior
	To address our hypotheses on the relations between cognitive skills and neural indicators of anticipation, multiple regressions were conducted predicting scores on the Flanker, Card Sort, Receptive Language, and Processing Speed tasks from contralater...


	Discussion
	Individual differences in bodily attention: Variability in anticipatory mu rhythm power is associated with executive function abilities and processing speed
	Staci Meredith Weiss (sweiss@temple.edu)   Rebecca L. Laconi (devlab@temple.edu)
	Department of Psychology, 1701 N. 13th Street   Department of Psychology, 1701 N. 13th Street
	Philadelphia, PA 19122 USA     Philadelphia, PA 19122 USA
	Peter J. Marshall (pjmarsh@temple.edu)
	Abstract
	Introduction
	The Active Role of Alpha Oscillations in Perception

	Introduction
	Materials and Methods
	Results
	Conclusion
	Acknowledgments
	References
	Ru Qi Yu (ruqiyu@psych.ubc.ca)
	Department of Psychology, University of British Columbia
	Jiaying Zhao (jiayingz@psych.ubc.ca)
	Department of Psychology, and Institute for Resources, Environment and Sustainability, University of British Columbia
	Abstract
	Introduction
	Experiment 1
	Participants
	Stimuli
	Procedure
	Figure 2. Experiment 1 inference phase. The four colors were combined into six color pairs. The pairs were presented first, followed by a search array. The target appeared in all four quadrants with equal probability following each pair. Based on the ...
	Results and Discussion

	Experiment 2
	Participants
	Stimuli and Procedure
	The stimuli and procedure in the experiment were the same as those in Experiment 1, except for one critical difference:
	Results and Discussion

	Experiment 3
	Participants
	Stimuli and Procedure
	The stimuli and procedure in the experiment were the same as those in Experiment 1, except for two critical differences.
	Results and Discussion

	General Discussion
	Acknowledgements
	References
	Quantifying the Conceptual Combination Effect on Word Meanings
	Nora Aguirre-Celis (naguirre@cs.utexas.edu)
	ITESM, Monterrey, Mexico & The University of Texas at Austin
	Department of Computer Science, 2317 Speedway  Austin, TX 78712 USA
	Risto Miikkulainen (risto@ cs.utexas.edu)
	The University of Texas at Austin
	Department of Computer Science, 2317 Speedway  Austin, TX 78712 USA
	Abstract
	Introduction
	Concept Attribute Representation Theory
	Data Preparation
	Sentence Collection
	Neural fMRI Representation of Sentences
	Synthetic fMRI Word Representations
	Semantic CAR Representations for Words

	Computational Approach
	Results
	The Conceptual Combination Effect
	Aggregation Analysis

	Discussion and Future Work
	Conclusion
	Acknowledgments
	References
	Introduction
	Methods
	Participants
	Cognitive Tests
	Survey
	Equipment
	Clustering
	Corpora Construction
	Language and Surprisal Modeling

	Results
	Clustering
	Behavioral Data
	Language Media Input Modality
	Language Models

	Discussion
	Introduction
	Experiment 1
	Experiment 2
	Experiment 3
	General Discussion
	Conclusion
	Acknowledgements
	References
	Distinguishing Two Types of Prior Knowledge That Support Novice Learners
	Anita B. Delahay (adelahay@cmu.edu)
	Carnegie Mellon University, Department of Psychology,
	5000 Forbes Ave. Pittsburgh, PA 15213 USA
	Marsha C. Lovett (lovett@cmu.edu)
	Abstract
	Introduction
	Background
	Conceptual and Procedural Knowledge
	Research Questions

	Method
	Participants
	Design and Procedure

	Analyses and Results
	Predictor Variables
	Linear Regressions

	Discussion
	Conclusion
	Acknowledgments
	References
	Stella Doukianou (S.Doukianou@gre.ac.uk)
	Damon Daylamani-Zad (D.D.Zad@gre.ac.uk)
	School of Computing and Mathematical Sciences, University of Greenwich,
	Park Row, London, SE10 9LS, U.K.
	Petros Lameras (PLameras@cad.coventry.ac.uk)
	Ian Dunwell (IDunwell@cad.coventry.ac.uk)
	School of Computing, Electronics and Maths, Coventry University, Priory St,
	Coventry CV1 5FB, U.K.
	Abstract
	Introduction
	Background
	Visualizations and external representations
	Participants Sixty volunteers from the UK participated in the study. The participants were divided into two groups depending on their educational level:
	Procedure Participants were given the participant information sheet informing them about the study and the informed consent form to sign. After the informed consents were obtained, participants started filling in the tasks using pen and paper. On aver...
	Experiment 2
	Method
	Participants In total 225 undergraduate computer science students, from a UK University, completed the tasks and the questionnaires. Participants in this study included 66 females and 159 males (M age = 29, age range 18 – 32). The allocation of the pa...

	Procedure The experiment took place at the Faculty of Computer and Engineering at Coventry University and lasted approximately 30 minutes. It was divided into three stages. In the first stage, participants were given the participant information sheet ...

	Discussion
	References
	Introduction
	Experiment: OpenLock Task
	Participants
	Materials and Procedure
	Human Results
	Model Details
	Model Results

	Conclusion
	Discussion

	References
	Introduction
	Model
	Probabilistic structure
	Inference
	Task and model predictions

	Experiment
	Methods
	Results

	General Discussion
	References
	Syntactic bootstrapping
	Related work
	A formal model
	Learning
	Experiments

	Conclusion
	Acknowledgments
	Model details

	Chafe, W. (1980a). The Development of Consciousness in the Production of a Narrative. In W. Chafe (ed.).  The Pear Stories: Cognitive, Cultural, and Linguistic Aspects of Narrative Production (pp. 9–50). Norwood, New Jersey: Ablex.
	Cummings, L. (2015). Pragmatic and Discourse Disorders. Cambridge: Cambridge University Press.
	Ditman, T., Holcomb, P. I., & Kuperberg, G. F. (2008). Time travel through language: Temporal shifts rapidly decrease information accessibility during reading. Psychonomic Bulletin & Review, 14, 750–756.
	Downing, P. (1980). Factors Influencing Lexical Choice in Narrative. In W. Chafe (ed.), The Pear Stories: Cognitive, Cultural, and Linguistic Aspects of Narrative Production (pp. 89–126). Norwood, New Jersey: Ablex.
	Du Bois, J. (1980). The Search of a Cultural Niche: Showing the Pear Film in a Mayan Community. In W. Chafe (ed.), The Pear Stories: Cognitive, Cultural, and Linguistic Aspects of Narrative Production (pp. 1–8). Norwood, New Jersey: Ablex.
	Fon, J., Johnson, K. & Chen, S. (2011). Durational Patterning at Syntactic and Discourse Boundaries in Mandarin Spontaneous Speech. Language and Speech, 54, 5-32.
	Glebkin V., Safronov N. & Sonina V. (2017). Discourse Acquisition in ‘Pear Stories’ of Preschool-aged Children. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. J. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Societ...
	Kibrik, A., Fedorova, O., & Nikolaeva, Ju. (2015). Multimodal Discourse: In Search of Units, in G. Airenti, B. Bara & G. Sandini (eds.), Proceedings of the EuroAsianPacific Joint Conference on Cognitive Science, 4th European Conference on Cognitive Sc...
	Kurby, C., & Zacks, J. (2011). Age differences in the perception of hierarchical structure in events. Memory & Cognition, 39, 75–91.
	Laurent, A, Nicoladis, E. & Marenette, P. (2015). The development of storytelling in two languages with words and gestures. The International Journal of Bilingualism, 19(1), 56–74.

	Matzur, I. & Mickievicz, A. (2012). Pear Stories and Audio Description: Language, Perception and Cognition across Cultures. Perspectives, 20 (1), 55–65.
	Vilaró, A., Duchowski, A, Pilar, O., Grindinger, T., Tetreault, S. & di Giovanni, E. (2012). How sound is the Pear Tree Story? Testing the effect of varying audio stimuli on visual attention distribution. Perspectives, 20 (1), 55–65.
	Zacks, J. (2015). Flicker. Your Brain on Movies. Oxford; N. Y.: Oxford University Press.
	Zacks, J., Speer, N., & Reynolds, J. (2009). Segmentation in reading and film comprehension. Journal of Experimental Psychology: General, 138, 307–327.
	Zacks, J. M., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. Journal of Experimental Psychology: General, 130, 29-58.
	Zwaan, R., Magliano, J., & Graesser, A. (1995). Dimensions of situation model construction in narrative comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 386–397.

	Resource-Rich versus Resource-Poor Assessment in Introductory Computer Science and its Implications on Models of Cognition: An in-Class Experimental Study
	Tobias Halbherr1, 2 (tobias.halbherr@gess.ethz.ch), Hermann Lehner3 (hermann.lehner@inf.ethz.ch), Manu Kapur1 (manukapur@ethz.ch)
	1ETH Zurich; Department of Humanities, Social and Political Sciences; Institute of Learning Sciences and Higher Education
	2ETH Zurich; Educational Development and Technology
	3ETH Zurich; Department of Computer Science
	Abstract
	Introduction
	Resource-Rich Assessment
	Cognition
	Educational Technology
	Code Expert

	Method
	Validity
	Operationalizing Validity
	Operationalizing the Resource-Affordances
	Learning and Assessment Tasks
	Hypotheses from the Cognitive Perspectives
	Procedure
	Sample

	Results
	Discussion
	Learning
	Assessment Validity
	Cognition
	Implications for Practice

	References
	Introduction
	Data
	Modeling
	Context model
	Inference: Sequential Monte Carlo
	Encoding and recall
	Prediction
	Procedure

	Results
	Clustering
	Recall
	Prediction

	Discussion
	Conclusion
	Acknowledgments
	Introduction
	Background
	Model
	Procedure

	Experiment
	Simulated toy data
	Optimal agent
	Application to the free-foraging task

	Results and Discussion
	Optimal agent
	Real agent

	Conclusion
	Introduction
	Suspense as the variance in future beliefs

	An experimental test of the theory
	Methods

	Results
	Alternative models

	General Discussion
	The Cognitive Underpinnings of Inductive Grammar Learning
	David Martinez (dmartin5@umd.edu)
	Alison Tseng (atseng1@umd.edu)
	Valarie Karuzis (vkaruzis@umd.edu)
	Meredith Mislevy-Hughes (mmislevy@umd.edu)
	Nick B. Pandža (npandza@umd.edu)
	Gregory J. H. Colflesh (colflesh@gmail.com)
	Polly O'Rourke (porourke@umd.edu)
	University of Maryland, College Park, 7005 52nd Ave, College Park, MD 20742
	Abstract
	Introduction
	Explicit-Inductive Grammar Learning
	Working Memory Capacity
	Inductive Reasoning
	Relationship between WMC and Inductive Reasoning
	Grammatical Sensitivity
	The Present Study

	Method
	Participants
	Procedure
	Instruments
	Words in Sentences (WIS) In the WIS, each item consisted of two or more English sentences. One word in the first sentence was printed in uppercase letters. Four or five words in the remaining sentences were underlined and were labeled with correspondi...
	Remember and Count (RAC) WMC was assessed by the RAC task (Hughes et al., 2016; O’Rourke et al., 2017), a visuospatial complex span task. In the RAC task, participants first see a sequence of triangles of different colors presented in a sequence in di...


	Results
	Discussion
	References
	Explanation and intervention
	Current study
	Experiments
	Participants
	Equipment
	Procedure
	Results
	Discussion

	General Discussion
	Revisiting the self-explaining effect
	Future directions
	Conclusion

	Introduction
	Methodology: Human ABX evaluation
	 Methodology: Model ABX evaluation 
	Experiments: Humans
	Experiments: Models
	Results: Humans
	Results: Models
	Results: Model–human comparison
	Discussion
	Conclusion
	Acknowledgements
	References
	Introduction
	Explanatory virtues and belief
	Experiment 1
	Methods
	Results and Discussion

	Experiment 2
	Methods
	Results

	General Discussion
	References
	Introduction
	Heuristics as Models of Risky Choice
	Toolbox Models of Decision Making
	Strategy Selection Based on a Rational Cost-Benefit Analysis (RCBA)
	Rational Strategy Selection Learning (RSSL)
	Toolbox Models Without Adaptive Strategy Selection

	Cumulative Prospect Theory
	Data
	Model Evaluation
	Model Fitting and Prediction

	Results
	Predictive Accuracy
	Comparing Predicted and Actual Performance
	Which Strategies Are In The Adaptive Toolbox?

	Discussion
	References
	Introduction
	Corpus Analysis
	Methods
	Results
	Discussion

	Experimental Framework
	Method
	Results
	Discussion

	Model: Communication as planning
	Model Results

	General Discussion
	Acknowledgements
	References
	Introduction
	Developmental trajectory of probabilistic reasoning
	Teaching Children Probability Concepts
	Prior knowledge and instructional context
	Rationale for the current study

	Methods
	Participants
	Material
	Procedure

	Results
	Assessment Phase Results
	Assessment Phase Discussion
	Conflict Phase Results
	Conflict Phase Discussion
	Post-Test Phase Results
	Post-Test Phase Discussion

	General Discussion
	Acknowledgements
	References
	Introduction
	Mental imagery in cognitive architectures

	An ACT-R approach to mental imagery
	Modifications required to model imagery

	Testing the approach
	Mental scanning
	Mental rotation

	Discussion
	Acknowledgements
	References
	Introduction
	General Methods
	Experiment 1
	Results and Discussion

	Experiment 2
	Results and Discussion

	Discussion
	References
	Introduction
	Change My View

	Present Experiments
	Experiment 1
	Results and Discussion
	Experiment 2
	Results and Discussion

	Discussion
	References
	Introduction
	Method
	Experimental Details
	Word Embeddings

	Results
	Predictive Accuracy of Mapping Approach
	Comparison to Model and Human Baselines
	Amount of Information Required for Prediction
	Psychological Substrates of Judgment

	Discussion
	References
	Agency Drives Category Structure in Instrumental Events
	Lilia Rissman (l.rissman@let.ru.nl)
	Center for Language Studies, Erasmusplein 1
	Nijmegen, the Netherlands 6525 HT
	Asifa Majid (asifa.majid@york.ac.uk)
	Abstract
	Introduction
	Instrument as a Thematic Role

	Method
	Results
	Acknowledgments
	References
	Modelling semantics by integrating linguistic,
	visual and affective information
	Armand S. Rotaru (armand.rotaru.14@ucl.ac.uk) Gabriella Vigliocco (g.vigliocco@ucl.ac.uk)
	Faculty of Brain Sciences, University College London,
	WC1H 0DS, London, United Kingdom
	Abstract
	Introduction
	Methods
	Emotion Model. The emotion model that we use is DeepMoji (Felbo et al., 2017), trained on 1.2 billion tweets. This model has been shown to obtain state-of-the-art performance in tasks involving emotion and sentiment analysis, as well as sarcasm detec...
	Visual Model. To select the best model, we compared five models, based on their performance in predicting subjective similarity/relatedness ratings. The first model (K&B) is the convolutional model employed by Kiela and Bottou (2014; 6144 dimensions...
	Results
	Discussion
	References
	Dionysia Saratsli (Dsaratsl@Udel.Edu)
	Department of Linguistics and Cognitive Science, 125 Main Street
	Newark, DE 19702 USA
	Stefan Bartell (Sbartell@Udel.Edu)
	Department of Linguistics and Cognitive Science, 125 Main Street (1)
	Newark, DE 19702 USA (1)
	Anna Papafragou (Papafragou@Psych.Udel.Edu)
	Department of Psychological and Brain Sciences, 105 The Green
	Newark, DE 19702 USA (2)
	Abstract
	Learnability and the Typological Prevalence Hypothesis (TPH)
	Evidentiality and TPH
	Experiment
	Results

	Discussion
	Acknowledgements
	References
	Introduction
	Methods
	Data Acquisition
	Cognitive Model

	Results
	Step 1: Influence of NDRT-Complexity on Takeover Times in Empirical Data
	Step 2: Correlation between Model Predictions and Empirical Results of Different Objective Complexities
	Step 3: Test whether Model Predictions of different Complex Traffic Environments show Significant Differences

	Discussion
	Conclusion
	Acknowledgements
	Capturing Intra-and Inter-Brain Dynamics
	with Recurrence Quantification Analysis
	Rebecca Scheurich (rebecca.scheurich@mail.mcgill.ca)
	McGill University, Department of Psychology
	Montreal, QC, Canada
	McGill University, Department of Psychology
	Montreal, QC, Canada
	Abstract
	Introduction
	Methods
	Participants
	Equipment and Materials


	Results
	Auto-recurrence Outcomes

	Discussion
	Introduction
	Methods
	Participants
	Feature Selection
	Procedure

	Results
	What proximal cues do people use to estimate appliances’ energy use?
	Characterizing the complex structure of the full appliance space

	Discussion
	Conclusion
	References
	Introduction
	Method
	Materials
	Procedure
	EEG recording and data preprocessing
	Statistical analysis of the ERPs following the onset of the critical noun


	Results
	Discussion
	Acknowledgments
	Abstract
	Introduction
	Discriminating between choice strategies
	Experiment: easy money and hard pens
	Precursor study
	Main study

	Input or enabler?
	Discussion
	References
	Using eye gaze data to examine the flexibility of resource allocation in visual working memory
	Edmond Stewart (e.stewart@unsw.edu.au)
	Chris Donkin (christopher.donkin@gmail.com)
	Mike Le Pelley (m.lepelley@unsw.edu.au)  School of Psychology, University of New South Wales
	Abstract
	Introduction
	The mimicry problem
	A slot and resource model of encoding in VWM

	The current experiment
	Method
	Results
	Discussion
	Conclusions

	Acknowledgments
	References
	Introduction
	Related Work
	Creativity in Advertising Prints
	Multimodal Advertising Creativity Dataset
	Appreciation Prediction Experiments
	Appreciation Detection on Slogans
	Linguistic Experiment Results
	Appreciation Detection on Images
	Visual Modality Experiment Results
	Multimodal Fusion

	Discussion and Conclusion
	References
	Speaking but not Gesturing Predicts Motion Event Memory
	Within and Across Languages
	Marlijn ter Bekke (Marlijn.terBekke@mpi.nl)
	Radboud University, Nijmegen, The Netherlands
	Wundtlaan 1, 6525XD Nijmegen, The Netherlands
	Aslı Özyürek (Asli.Ozyurek@mpi.nl)
	Center for Language Studies & Donders Center for Cognition, Radboud University, Nijmegen, The Netherlands
	Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
	Wundtlaan 1, 6525XD Nijmegen, The Netherlands
	Ercenur Ünal (Ercenur.Unal@ozyegin.edu.tr)
	Center for Language Studies, Radboud University, Nijmegen, The Netherlands
	Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
	Özyeğin University, Istanbul, Turkey
	Nişantepe Mahallesi Orman Sokak 34794 Çekmeköy, Istanbul, Turkey
	Abstract
	Introduction
	The Present Study
	Method
	Participants. Data were collected from 19 adult native speakers of Dutch (15 females, Mage = 23) and 22 adult native speakers of Turkish (16 females, Mage = 21). Dutch speakers received monetary compensation for their participation. Turkish speakers r...
	Materials. Target events presented in the study phase consisted of 16 silent video clips that depicted a female actor moving with respect to a landmark object along a particular path with a particular manner (e.g., a woman hopped to a cactus). Each cl...
	Procedure. Each participant was tested in a quiet room at their university campus in their native language by a native speaker together with a confederate who served as an addressee.
	Coding. Descriptions of target events were coded for the presence of path and manner information in speech and gesture using ELAN software (Lausberg & Sloetjes, 2009) by a native speaker of the relevant language. In speech, manner information was code...


	Results
	Speech and gesture production
	Memory performance

	Discussion
	Acknowledgments
	References
	Introduction
	Experiment 1: Uncovered  Covered
	Participants
	Materials and methods
	Results and analysis

	Experiment 2: Covered  Uncovered
	Participants
	Materials and methods
	Results and analysis

	Experiment 3: Adult comparison
	Participants
	Materials and methods
	Results and analysis

	General Discussion
	Acknowledgments

	Thinking Locally or Globally? – Trying to Overcome the Tragedy  of Personnel Evaluation with Stories or Selective Information Presentation
	Individual versus Group Utility
	Tragedy of Personnel Evaluation
	Experiment 1: Story-Induced Focus
	Method
	Participants The experiment was conducted via MTURK with participants from the US. 121 participants passed the two selection-criteria (time spent on the first page, and the correct choice of a rephrasing of the instructions) and finished the experimen...
	Procedure and material The computer experiment resembled previous T-PETs (von Sydow et al., 2018) and was implemented using SociSurvey.

	Results
	Discussion Experiment 1

	Experiment 2 – Selective Information Presentation
	Method
	Results

	General Discussion
	Acknowledgments
	References
	Acquiring Agglutinating and Fusional Languages Can Be Similarly Difficult: Evidence from an Adaptive Tracking Study
	Svenja Wagner (s1581727@sms.ed.ac.uk),
	Centre for Language Evolution, The University of Edinburgh,
	3 Charles Street, Edinburgh, EH8 9AD, UK
	Kenny Smith (Kenny.Smith@ed.ac.uk),
	Centre for Language Evolution, The University of Edinburgh,
	3 Charles Street, Edinburgh, EH8 9AD, UK
	Jennifer Culbertson (Jennifer.Culbertson@ed.ac.uk)
	Centre for Language Evolution, The University of Edinburgh,
	3 Charles Street, Edinburgh, EH8 9AD, UK
	Abstract
	Introduction
	Experiment 1
	Discussion
	Conclusion
	References
	Jennifer M. Weber (jennifer.m.ellis@colorado.edu)
	Eliana Colunga (eliana.colunga@colorado.edu)
	Abstract
	Vocabulary Acquisition
	There is enormous variability in the vocabularies of young children just beginning to speak. By two years of age, an otherwise typically developing toddler may know as few as ten words or well over 300 (Fenson, 1993). These early differences in vocabu...
	As children learn words, they also learn important features of the objects represented by these words and how these features relate to word use in general. Children must learn the regularities in their world, such as all balls are round, and all tooth...
	Late talkers are children who lag in their vocabulary size compared to their same-aged peers in the absence of any known developmental disorders. Although the label of “late talker” is not a clinical diagnosis in of itself, this group is often defined...
	Evidence suggests that late talkers and typically developing children differ not only in their vocabulary size, but also in the way they learn new words. Thirty-month-old late talkers, when defined as falling at or below the 30th percentile on the CDI...
	Current Study
	Method
	Participants
	Materials
	Procedure

	The procedure during the test phase with the solid and nonsolid novel sets was the same, except without feedback. Children were shown the exemplar and told, “look at this dax” and then asked to “get a dax” or “get another dax” for the solid set or “ge...
	Data Analysis
	The work presented here looks at the differential contributions of word learning biases to the developmental trajectories of typically developing children and late talkers, and in doing so provides important novel insights. First, word learning biases...
	It is important to note that late talkers and their typically developing peers do not differ in their initial shape bias scores. Although this may seem to contradict Jones’ (2003) finding that 30-month-old late talkers do not show a consistent shape b...
	In contrast to the documented positive relationship between the shape bias and vocabulary size in typically developing children, among late talkers there is a negative relationship between the strength of their shape bias and their vocabulary size at ...

	Acknowledgments
	We are grateful to the families of Boulder, CO, who participated and to the research assistants in the DACS Lab at the University of Colorado Boulder who collected the data. This research was supported by NICHD grant R01 HD067315 to Eliana Colunga.
	References
	The Effect for Category Learning on Recognition Memory:
	A Signal Detection Theory Analysis
	Siyuan Yin1,2, *, Kevin O’Neill3, *, Timothy F. Brady4, Felipe De Brigard1,2,3,5
	1Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA.
	2Department of Philosophy, Duke University, Durham, NC 27708, USA.
	3Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.
	4Department of Psychology, University of California, San Diego, CA 92093, USA.
	5Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
	Abstract
	Introduction
	Category Learning and Recognition Experiment
	Participants
	Materials
	Procedure
	Results

	Discussion
	Acknowledgments
	References
	Introduction
	Experiment 1
	Methods
	Results and Discussion

	Experiment 2
	Methods
	Results and Discussion

	Experiment 3
	Methods
	Results and Discussion

	General Discussion
	References
	Roberto Aguirre. Center of Basic Research in Psychology. Uruguay

